hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems

نویسندگان

  • Vít Dolejsí
  • Alexandre Ern
  • Martin Vohralík
چکیده

We devise and study experimentally adaptive strategies driven by a posteriori error estimates to select automatically both the space mesh and the polynomial degree in the numerical approximation of diffusion equations in two space dimensions. The adaptation is based on equilibrated flux estimates. These estimates are presented here for inhomogeneous Dirichlet and Neumann boundary conditions, for spatially varying polynomial degree, and for mixed rectangular-triangular grids possibly containing hanging nodes. They deliver a global error upper bound with constant one and, up to data oscillation, error lower bounds on element patches with a generic constant dependent only on the mesh regularity and with a computable bound. We numerically assess the estimates and several hp-adaptive strategies using the interior penalty discontinuous Galerkin method. Asymptotic exactness is observed for all the symmetric, nonsymmetric (odd degrees), and incomplete variants on nonnested unstructured triangular grids for a smooth solution and uniform refinement. Exponential convergence rates are reported on nonmatching triangular grids for the incomplete version on several benchmarks with a singular solution and adaptive refinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality-based adaptivity in the hp-finite element method

In this paper a duality-based a posteriori error analysis is developed for the conforming hp Galerkin finite element approximation of second-order elliptic problems. Duality arguments combined with Galerkin orthogonalty yield representations of the error in arbitrary quantities of interest. From these error estimates, criteria are derived for the simultaneous adaptation of the mesh size h and t...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Hp-finite Element Methods for Hyperbolic Problems A

This paper is devoted to the a priori and a posteriori error analysis of the hp-version of the discontinuous Galerkin nite element method for partial differential equations of hyperbolic and nearly-hyperbolic character. We consider second-order partial diierential equations with nonnegative characteristic form, a large class of equations which includes convection-dominated diiusion problems , d...

متن کامل

A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems

We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximat...

متن کامل

Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016